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ABSTRACT 
 

Drug dissolution from solid dosage forms has been described by some kinetic models which include zero-
order kinetics, first order kinetics, Higuchi model and Hixson-Crowell. Drug release from matrices may involve 
processes of diffusion, erosion, and leaching or dissolution. Drug release may follow mixed mechanism of release; 
it may involve both diffusion and dissolution controlled processes. Some parameters such as the permeability of 
the polymer to dissolution medium, the solubility of the drug, the dissolution medium and the molecular size of 
the drug may affect drug release processes. Insoluble polymers retard drug release by presenting an impermeable 
surface, being insoluble in water. This article however, presents various models used in studying the kinetics and 
mechanisms of drug release from swellable and non swellable matrices.  
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INTRODUCTION 
 

Drugs may be released through leaching in dissolution medium which is able to enter 
the polymer drug matrix system through pores, cracks and inter granular spaces. The infiltration 
rate of the fluid into the matrix may be controlled by changes in the interspaces of the matrix 
[1]. Drug release from matrices may involve processes of diffusion, erosion, and leaching or 
dissolution [2-3]. Drug release may follow mixed mechanism of release; it may involve both 
diffusion and dissolution controlled processes [4]. In most of the cases the theoretical concepts 
does not exist and some empirical equations have proved to be more appropriate [2]. Modified 
drug delivery system such as sustained or controlled release tablets and capsules generally 
consists of drug dispersed in a polymeric matrix where the process of diffusion predominates. 
Drug dissolution from solid dosage forms has been described by some kinetic models which 
include zero-order kinetics, first order kinetics, Higuchi model and Hixson-Crowell. The 
mechanisms of drug release from a matrix can be interpreted using these models: Weibull 
model, Baker-Lonsdale model, Korsmeyer-Peppas and Ritger-Peppas model and Hopfenberg 
model [2-4].  
 
Zero order: 
 

The zero order rate (Eq. 1) describes the systems where the drug release rate is 
independent of its concentration [2].     
 

C = k0t ------------------ (1) 
 

Where, K0 is zero-order rate constant expressed in units of concentration/time and t is 
the time.  
 

A plot of amount of drug released versus time will be linear for zero-order kinetics. The 
dosage forms following this profile, release the same amount of drug by unit time and it is the 
ideal method of drug release in order to achieve a prolonged pharmacological action. This 
relation can be used to determine the drug dissolution from various types of modified release 
dosage forms such as matrix tablets with low soluble drugs, coated tablets and capsules and 
osmotic systems [2, 5].    
 
First order: 
 

The first order kinetics was first applied for drug dissolution studies by Gibaldi and 
Feldman in 1967 and later by Wagner in 1969 [6-7].The first order equation (Equations 2 and 3) 
describes the release of drug from system where release rate is concentration dependent [2].   
 

Log Ct = Log C0 - k1t / 2.303 -------------- (2) 
 

LogC0 – LogCt = kt / 2.303 -------------- (3) 
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Where, Ct is the amount of drug released in time t, C0 is the initial concentration of drug 
and K1 is first order constant. Here the graphical representation of the log cumulative of % drug 
remaining (log C0 – Ct) versus time will be linear with a negative slope [8]. The dosage form 
follows this profile such as those containing water soluble drug in a porous matrices release the 
drug that is proportional to the amount of drug released by unit time diminish [2, 9].  
 
Higuchi models: 
 

Higuchi in 1961 and in 1963 developed models to study the release of water soluble and 
low soluble drugs incorporated in semisolid and solid matrices [10-11]. To study the dissolution 
from a planer system having a homogeneous matrix the relation obtained is shown in equation 
4:  
 

Q = [D (2C-Cs) Cst]1/2 ------------- (4) 
 

Where Q is the amount of drug released in time t per unit area, C is the initial drug 
concentration, Cs is the drug solubility in the matrix media and D is the diffusivity of drug 
molecules in the matrix substance. To study the dissolution from a planer a spherical 
heterogeneous matrix system, where the drug concentration in the matrix is lower than its 
solubility and the release occurs through pores in the matrix, the relation obtained: 
 

Q = Dε/τ (2C-εCs) Cst ----------------- (5) 
 

Where Q, D, C, Cs and t has the same meaning as in equation (4), ε is the matrix 
porosity, τ is the tortuosity factor of the capillary system. In general way Higuchi model can be 
simplified as, 
 

Q = KHt1/2-------------------- (6) 
 

Where KH is the Higuchi dissolution constant. Higuchi describes drug release as a 
diffusion process based in the Fick’s law, square root time dependent. For diffusion controlled 
process a plot of Q versus square root of time is linear. The integral form of Higuchi equation is 
employed in seeking to establish whether mixed order release kinetics exists:  
 

Log Q = log kH +1/2log t----------------- (7) 
 

A confirmation of Higuchi diffusion is provided by the equation 7; diffusion controlled 
process dominates when the logarithm plot approaches 0.5 [2-3]. 
 
Hixson-Crowell cube root law: 
 

The Hixson-Crowell cube root law (Eq. 8) describes the release from systems where 
there is a change in surface area and diameter of particles or tablets [12-13].  
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Q0
1/3 – Qt

1/3 = KHCt---------------- (8) 
 

Where, Qt is the remaining amount of drug in the dosage form at time t, Q0 is the initial 
amount of the drug in tablet and KHC is the rate constant for Hixson-Crowell rate equation. A 
graphical representation of the cube root of the amount remaining versus time will be linear if 
the equilibrium conditions are not reached and if the geometrical shape of the dosage form 
diminishes proportionally overtime (Cube root of initial drug load minus cube root of % drug 
remaining) are plotted against time (hour) to demonstrate the Hixson Crowell plot [14]. This 
model is used by assuming that release rate is limited by the drug particles dissolution rate and 
not by the diffusion [2]. 
 
Kitazawa model 
 

Kitazawa’s model reveals significant changes in the release rates of a system releasing 
its content under sink condition. Kitazawa’ equation is expressed as: 
 

Log CS/CS – Ct = Kt/ 2.303 -------------- (9) 
 

Cs and Ct are amount of drug dissolved at infinite time and at time t respectively, K is the 
dissolution rate constant derived from the slope of the regression line [3].        
 
Ritger-Peppas and Korsmeyer-Peppas models 
 

Ritger and Peppas (1987) and Korsmeyer and Peppas (1984) developed an empirical 
equation to analyze both Fickian and non-Fickian release of drug from swelling as well as non-
swelling polymeric delivery systems [15-17]. The equation is represented as:  
 

Mt/M∝ = Ktn --------------- (10) 
 
The logarithm form of equation 8 could be written as: 
 

Log (Mt /M∝) = Log k + n Log t -------------- (11) 
 

where Mt/M∝ is fraction of drug released at time t, n is diffusion exponent indicative of 
the mechanism of transport of drug through the polymer, K is kinetic constant (having units of t-

n) incorporating structural and geometric characteristics of the delivery system.  
 

For Ritger-Peppas models, the release exponent n ≤ 0.5 for Fickian diffusion release 
from slab (non swellable matrix), 0.5 < n < 1.0 for non-Fickian release (anomalous), this means 
that drug release followed both diffusion and erosion controlled mechanisms and n = 1 for zero 
order release, where drug release is independent of time as shown in Tables 1 and 2 [15-18]. 
Also, 0.45 < n < 1.0 for non-Fickian release (anomalous) from cylinders (non swellable matrix) 
and 0.43 < n < 1.0 for non-Fickian release (anomalous) from non swellable spherical samples as 
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shown in Table 2. For Korsmeyer-Peppas models, the release exponent n ≤ 0.45 for Fickian 
diffusion release and 0.45 < n < 0.89 for non-Fickian release (anomalous). 

 
Table 1: Ritger-Peppas diffusion exponent and mechanism of diffusional release from various swellable 

controlled release systems 
 

Diffusion exponent, n                                                                       Drug release mechanism 

Thin film Cylindrical sample Spherical sample  

0.50 0.45 0.43 Fickian diffusion 

0.50 < n < 1.00 0.45 < n < 0.89 0.43 < n < 0.85 Anomalous (non-Fickian) 
transport 

1.0 0.89 0.85 Case 11 transport 

 
Table 2: Ritger-Peppas diffusion exponent and mechanism of diffusional release from various non-swellable 

controlled release systems 
 

Diffusion exponent, n                                                                          Drug release mechanism 

Thin film Cylindrical sample Spherical sample  

0.50 0.45 0.43 Fickian diffusion 

0.50 < n < 1.00 0.45 < n < 1.00 0.43 < n < 1.00 Anomalous (non-Fickian) 
transport 

1.0 1.0 1.0 Zero-order release 

 
Weibull model: 
 

The Weibull equation expresses the accumulated fraction of drug ‘m’ in solution at time 
t as: 
 

M = 1- exp [-{(t-Ti)b}/a] --------------(12) 
 

Where M is accumulated fraction of drug in solution at time t, ‘a’ is the scale parameter 
which defines the time scale of the process. Ti is the location parameter, represents the lag 
time before the onset of the dissolution or release process and in most of the cases will be zero. 
The shape parameter, b, characterizes the curves as either exponential (b=1), S-shaped (b>1) or 
parabolic (b<1) [19]. The equation (12) can be rearranged as: 
 

Log [ln - (1-m)] = b Log (t-Ti)-log a ---------------- (13) 
 

Graphical representation of log [-ln (1-m)] versus time t gives a linear relation. Shape 
parameter (b) is obtained from the shape of the line and the scale parameter (a) can be 
estimated from the ordinate value (1/a) at time t =1[2]. 
 
 
Baker-Lonsdale model: 
 

Baker-Lonsdale in 1974 developed the model from the Higuchi model and describes the 
controlled release of drug from a spherical matrix that can be represented as: 
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3/2 [1-(1-Mt/M∞)2/3]-Mt/M∞ = (3DmCms) / (r0

2 C0) Xt------------(14) 
 

Where Mt is the amount of drug released at time t and M∞ is the amount of drug 
released at an infinite time, Dm is the diffusion coefficient, Cms is the drug solubility in the 
matrix, r0 is the radius of the spherical matrix and C0 is the initial concentration of the drug in 
the matrix [20]. Here graphical representation of the left side of the equation versus time will 
be linear if the established conditions were fulfilled. Baker-Lonsdale model could be redefined 
as: 
 

3/2 [1-(1-Mt/M∞)2/3]-Mt/M0 = kt --------------(15) 
 

Where k is the release constant corresponds to the slope. This equation can be used to 
the linearization of the release data from several formulations of microcapsules [21].  
 
Hopfenberg Model: 
 

Hopfenberg (1976) and Katzhendler et al (1997) developed a general mathematical 
equation describing drug release from slabs, spheres and infinite cylinders displaying 
heterogeneous erosions as: 
 

Mt/M∞ = 1 – [1-k0t/C0a0]n --------------(16) 
 

Where Mt is the amount of drug dissolved in time t, M∞ is the total amount of drug 
dissolved when the dosage form is exhausted, Mt/M∞ is the fraction of drug dissolved, k0 is the 
erosion rate constant, C0 is the initial concentration of drug in the matrix and a0 is the initial 
radius for sphere or cylinder or the half-thickness for a slab. The value of n is 1, 2, and 3 for a 
slab, cylinder and sphere respectively [2, 22-23].  
 
Power law 
 

Power law is a semi-empirical equation that describes drug release from polymeric 
system as shown in equation 17: 
 

At/A∞ = ktn --------------- (17) 
 

Where At and A∞ are the absolute cumulative amount of drug released at time ‘t’ and at 
infinite time respectively, ‘k’ is a constant incorporating structural and geometric characteristics 
of the device and n is the release exponent, indicative of the drug release mechanism [2].  
 

The exponent n = 1.0 for zero-order kinetics, n = 0.5 for diffusion controlled drug release 
and n between 0.5 and 1.0 or anomalous release mechanism. The extreme value for the 
exponent n, 0.5 and 1.0 are only valid for slab geometry [2, 24].  
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CONCLUSION 
 

Drug release kinetics can be determined using zero-order, first order, Higuchi and 
Hixson- Crowell models, while the mechanisms of drug release can be determined using 
Weibull model, Baker-Lonsdale model, Korsmeyer-Peppas or Ritger-Peppas model and 
Hopfenberg model. For each model the slope (n), regression coefficient (R2) and rate constant 
(k) are graphically determined and are used to predict the kinetics and mechanisms of drug 
release from matrices. 
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